Math.random()

Игра в кости с использованием модуля random в Python

Далее представлен код простой игры в кости, которая поможет понять принцип работы функций модуля random. В игре два участника и два кубика.

  • Участники по очереди бросают кубики, предварительно встряхнув их;
  • Алгоритм высчитывает сумму значений кубиков каждого участника и добавляет полученный результат на доску с результатами;
  • Участник, у которого в результате большее количество очков, выигрывает.

Код программы для игры в кости Python:

Python

import random

PlayerOne = «Анна»
PlayerTwo = «Алекс»

AnnaScore = 0
AlexScore = 0

# У каждого кубика шесть возможных значений
diceOne =
diceTwo =

def playDiceGame():
«»»Оба участника, Анна и Алекс, бросают кубик, используя метод shuffle»»»

for i in range(5):
#оба кубика встряхиваются 5 раз
random.shuffle(diceOne)
random.shuffle(diceTwo)
firstNumber = random.choice(diceOne) # использование метода choice для выбора случайного значения
SecondNumber = random.choice(diceTwo)
return firstNumber + SecondNumber

print(«Игра в кости использует модуль random\n»)

#Давайте сыграем в кости три раза
for i in range(3):
# определим, кто будет бросать кости первым
AlexTossNumber = random.randint(1, 100) # генерация случайного числа от 1 до 100, включая 100
AnnaTossNumber = random.randrange(1, 101, 1) # генерация случайного числа от 1 до 100, не включая 101

if( AlexTossNumber > AnnaTossNumber):
print(«Алекс выиграл жеребьевку.»)
AlexScore = playDiceGame()
AnnaScore = playDiceGame()
else:
print(«Анна выиграла жеребьевку.»)
AnnaScore = playDiceGame()
AlexScore = playDiceGame()

if(AlexScore > AnnaScore):
print («Алекс выиграл игру в кости. Финальный счет Алекса:», AlexScore, «Финальный счет Анны:», AnnaScore, «\n»)
else:
print(«Анна выиграла игру в кости. Финальный счет Анны:», AnnaScore, «Финальный счет Алекса:», AlexScore, «\n»)

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45

importrandom

PlayerOne=»Анна»

PlayerTwo=»Алекс»

AnnaScore=

AlexScore=

 
# У каждого кубика шесть возможных значений

diceOne=1,2,3,4,5,6

diceTwo=1,2,3,4,5,6

defplayDiceGame()

«»»Оба участника, Анна и Алекс, бросают кубик, используя метод shuffle»»»

foriinrange(5)

#оба кубика встряхиваются 5 раз

random.shuffle(diceOne)

random.shuffle(diceTwo)

firstNumber=random.choice(diceOne)# использование метода choice для выбора случайного значения

SecondNumber=random.choice(diceTwo)

returnfirstNumber+SecondNumber

print(«Игра в кости использует модуль random\n»)

 
#Давайте сыграем в кости три раза

foriinrange(3)

# определим, кто будет бросать кости первым

AlexTossNumber=random.randint(1,100)# генерация случайного числа от 1 до 100, включая 100

AnnaTossNumber=random.randrange(1,101,1)# генерация случайного числа от 1 до 100, не включая 101

if(AlexTossNumber>AnnaTossNumber)

print(«Алекс выиграл жеребьевку.»)

AlexScore=playDiceGame()

AnnaScore=playDiceGame()

else

print(«Анна выиграла жеребьевку.»)

AnnaScore=playDiceGame()

AlexScore=playDiceGame()

if(AlexScore>AnnaScore)

print(«Алекс выиграл игру в кости. Финальный счет Алекса:»,AlexScore,»Финальный счет Анны:»,AnnaScore,»\n»)

else

print(«Анна выиграла игру в кости. Финальный счет Анны:»,AnnaScore,»Финальный счет Алекса:»,AlexScore,»\n»)

Вывод:

Shell

Игра в кости использует модуль random

Анна выиграла жеребьевку.
Анна выиграла игру в кости. Финальный счет Анны: 5 Финальный счет Алекса: 2

Анна выиграла жеребьевку.
Анна выиграла игру в кости. Финальный счет Анны: 10 Финальный счет Алекса: 2

Алекс выиграл жеребьевку.
Анна выиграла игру в кости. Финальный счет Анны: 10 Финальный счет Алекса: 8

1
2
3
4
5
6
7
8
9
10

Игравкостииспользуетмодульrandom

 
Аннавыигралажеребьевку.

Аннавыигралаигрувкости.ФинальныйсчетАнны5ФинальныйсчетАлекса2

 
Аннавыигралажеребьевку.

Аннавыигралаигрувкости.ФинальныйсчетАнны10ФинальныйсчетАлекса2

 
Алексвыигралжеребьевку.

Аннавыигралаигрувкости.ФинальныйсчетАнны10ФинальныйсчетАлекса8

Вот и все. Оставить комментарии можете в секции ниже.

Extending

You can add your own methods to instances, as such:

var random =newRandom();random.bark=function(){if(this.bool()){return"arf!";}else{return"woof!";}};random.bark();

This is the recommended approach, especially if you only use one instance of .

Or you could even make your own subclass of Random:

functionMyRandom(engine){returnRandom.call(this, engine);}MyRandom.prototype=Object.create(Random.prototype);MyRandom.prototype.constructor= MyRandom;MyRandom.prototype.mood=function(){switch(this.integer(,2)){casereturn"Happy";case1return"Content";case2return"Sad";}};var random =newMyRandom();random.mood();

Or, if you have a build tool are are in an ES6+ environment:

classMyRandomextendsRandom{mood(){switch(this.integer(,2)){casereturn"Happy";case1return"Content";case2return"Sad";}}}constrandom=newMyRandom();random.mood();

Recipes¶

The default returns multiples of 2⁻⁵³ in the range
0.0 ≤ x < 1.0. All such numbers are evenly spaced and are exactly
representable as Python floats. However, many other representable
floats in that interval are not possible selections. For example,
isn’t an integer multiple of 2⁻⁵³.

The following recipe takes a different approach. All floats in the
interval are possible selections. The mantissa comes from a uniform
distribution of integers in the range 2⁵² ≤ mantissa < 2⁵³. The
exponent comes from a geometric distribution where exponents smaller
than -53 occur half as often as the next larger exponent.

from random import Random
from math import ldexp

class FullRandom(Random):

    def random(self):
        mantissa = 0x10_0000_0000_0000 | self.getrandbits(52)
        exponent = -53
        x = 
        while not x
            x = self.getrandbits(32)
            exponent += x.bit_length() - 32
        return ldexp(mantissa, exponent)

All
in the class will use the new method:

>>> fr = FullRandom()
>>> fr.random()
0.05954861408025609
>>> fr.expovariate(0.25)
8.87925541791544

The recipe is conceptually equivalent to an algorithm that chooses from
all the multiples of 2⁻¹⁰⁷⁴ in the range 0.0 ≤ x < 1.0. All such
numbers are evenly spaced, but most have to be rounded down to the
nearest representable Python float. (The value 2⁻¹⁰⁷⁴ is the smallest
positive unnormalized float and is equal to .)

See also

Generating Pseudo-random Floating-Point Values a
paper by Allen B. Downey describing ways to generate more
fine-grained floats than normally generated by .

JavaScript

JS Array
concat()
constructor
copyWithin()
entries()
every()
fill()
filter()
find()
findIndex()
forEach()
from()
includes()
indexOf()
isArray()
join()
keys()
length
lastIndexOf()
map()
pop()
prototype
push()
reduce()
reduceRight()
reverse()
shift()
slice()
some()
sort()
splice()
toString()
unshift()
valueOf()

JS Boolean
constructor
prototype
toString()
valueOf()

JS Classes
constructor()
extends
static
super

JS Date
constructor
getDate()
getDay()
getFullYear()
getHours()
getMilliseconds()
getMinutes()
getMonth()
getSeconds()
getTime()
getTimezoneOffset()
getUTCDate()
getUTCDay()
getUTCFullYear()
getUTCHours()
getUTCMilliseconds()
getUTCMinutes()
getUTCMonth()
getUTCSeconds()
now()
parse()
prototype
setDate()
setFullYear()
setHours()
setMilliseconds()
setMinutes()
setMonth()
setSeconds()
setTime()
setUTCDate()
setUTCFullYear()
setUTCHours()
setUTCMilliseconds()
setUTCMinutes()
setUTCMonth()
setUTCSeconds()
toDateString()
toISOString()
toJSON()
toLocaleDateString()
toLocaleTimeString()
toLocaleString()
toString()
toTimeString()
toUTCString()
UTC()
valueOf()

JS Error
name
message

JS Global
decodeURI()
decodeURIComponent()
encodeURI()
encodeURIComponent()
escape()
eval()
Infinity
isFinite()
isNaN()
NaN
Number()
parseFloat()
parseInt()
String()
undefined
unescape()

JS JSON
parse()
stringify()

JS Math
abs()
acos()
acosh()
asin()
asinh()
atan()
atan2()
atanh()
cbrt()
ceil()
clz32()
cos()
cosh()
E
exp()
expm1()
floor()
fround()
LN2
LN10
log()
log10()
log1p()
log2()
LOG2E
LOG10E
max()
min()
PI
pow()
random()
round()
sign()
sin()
sqrt()
SQRT1_2
SQRT2
tan()
tanh()
trunc()

JS Number
constructor
isFinite()
isInteger()
isNaN()
isSafeInteger()
MAX_VALUE
MIN_VALUE
NEGATIVE_INFINITY
NaN
POSITIVE_INFINITY
prototype
toExponential()
toFixed()
toLocaleString()
toPrecision()
toString()
valueOf()

JS OperatorsJS RegExp
constructor
compile()
exec()
g
global
i
ignoreCase
lastIndex
m
multiline
n+
n*
n?
n{X}
n{X,Y}
n{X,}
n$
^n
?=n
?!n
source
test()
toString()

(x|y)
.
\w
\W
\d
\D
\s
\S
\b
\B
\0
\n
\f
\r
\t
\v
\xxx
\xdd
\uxxxx

JS Statements
break
class
continue
debugger
do…while
for
for…in
for…of
function
if…else
return
switch
throw
try…catch
var
while

JS String
charAt()
charCodeAt()
concat()
constructor
endsWith()
fromCharCode()
includes()
indexOf()
lastIndexOf()
length
localeCompare()
match()
prototype
repeat()
replace()
search()
slice()
split()
startsWith()
substr()
substring()
toLocaleLowerCase()
toLocaleUpperCase()
toLowerCase()
toString()
toUpperCase()
trim()
valueOf()

Генератор псевдослучайных чисел и генератор случайных чисел

Для того, чтобы получить что-то случайное, нам нужен источник энтропии, источник некого хаоса из который мы будем использовать для генерации случайности.

Этот источник используется для накопления энтропии с последующим получением из неё начального значения (initial value, seed), которое необходимо генераторам случайных чисел (ГСЧ) для формирования случайных чисел.

Генератор ПсевдоСлучайных Чисел использует единственное начальное значение, откуда и следует его псевдослучайность, в то время как Генератор Случайных Чисел всегда формирует случайное число, имея в начале высококачественную случайную величину, которая берется из различных источников энтропии.

Выходит, что чтобы создать псевдослучайную последовательность нам нужен алгоритм, который будет генерить некоторую последовательность на основании определенной формулы. Но такую последовательность можно будет предсказать. Тем не менее, давайте пофантазируем, как бы могли написать свой генератор случайных чисел, если бы у нас не было Math.random()

ГПСЧ имеет некоторый алгоритм, который можно воспроизвести.
ГСЧ — это получение чисел полностью из какого либо шума, возможность просчитать который стремится к нулю. При этом в ГСЧ есть определенные алгоритмы для выравнивания распределения.

Линейный конгруэнтный ГПСЧ

Линейный конгруэнтный ГПСЧ(LCPRNG) — это распространённый метод для генерации псевдослучайных чисел. Он не обладает криптографической стойкостью. Этот метод заключается в вычислении членов линейной рекуррентной последовательности по модулю некоторого натурального числа m, задаваемой формулой. Получаемая последовательность зависит от выбора стартового числа — т.е. seed. При разных значениях seed получаются различные последовательности случайных чисел. Пример реализации такого алгоритма на JavaScript:

Многие языки программирования используют LСPRNG (но не именно такой алгоритм(!)).

Как говорилось выше, такую последовательность можно предсказать. Так зачем нам ГПСЧ? Если говорить про безопасность, то ГПСЧ — это проблема. Если говорить про другие задачи, то эти свойства — могут сыграть в плюс. Например для различных спец эффектов и анимаций графики может понадобиться частый вызов random. И вот тут важны распределение значений и перформанс! Секурные алгоритмы не могут похвастать скоростью работы.

Еще одно свойство — воспроизводимость. Некоторые реализации позволяют задать seed, и это очень полезно, если последовательность должна повторяться. Воспроизведение нужно в тестах, например. И еще много других вещей существует, для которых не нужен безопасный ГСЧ.

Функции для последовательностей

random.choice(seq)Возвращает случайный элемент из непустой последовательности . Если пуст, возникает ошибка .

Копировать

random.choices(population, weights=None, *, cum_weights=None, k=1)Возвращает список элементов размером , выбранных из с заменой. Если пуст, возникает ошибка .

Копировать

Если задана последовательность , выбор производится в соответствии с относительным весом. В качестве альтернативы, если задана последовательность , выбор производится в соответствии с совокупными весами (возможно, вычисляется с использованием ).

Например, относительный вес эквивалентны кумулятивному весу . Внутренне относительные веса преобразуются в кумулятивные перед выбором, поэтому поставка кумулятивного веса экономит время.

Если ни , ни не указаны, выбор производится с равной вероятностью. Если задана последовательность веса, она должна быть такой же, как и последовательность . возникает, если не правильно указан аргумент или .

или могут использовать любой тип чисел, который взаимодействует со значением , возвращаемым функцией (который включает целые числа, числа с плавающей точкой и фракции, но исключает десятичные числа).

random.shuffle(x)Перемешивает последовательность на месте.Необязательный аргумент — функция 0-аргумента, возвращающая случайное значение float в ; по умолчанию это функция .

Копировать

Чтобы перемешать неизменяемую последовательность и вернуть новый перемешанный список, используйте .

Обратите внимание, что даже для небольшого общее количество перестановок может увеличиваться сильнее, чем период большинства генераторов случайных чисел.Это означает, что большинство перестановок длинной последовательности никогда не могут быть выполнены. Например, последовательность длиной 2080 элементов является самой большой, которая может вписываться в период генератора случайных чисел «Мерсин Твистер»

random.sample(population, k)Возвращает список длиной из уникальных элементов, выбранных из последовательности или множества. Используется для случайной выборки без замены.

Копировать

Это новый список, содержащий элементы из последовательности, оставляя исходную последовательности неизменной. Новый список находится в порядке выбора, так что все суб-срезы будут также случайными последовательностями.

Это позволяет победителям розыгрышей (при выборке) делиться на главный приз, второе место и далее.

Участники не должны быть hashable или уникальными. Если последовательность содержит повторы, то каждое вхождение является возможным выбором в выборке.

Что бы выбрать одно число из ряда чисел, используйте объект в качестве аргумента. Это простое решение для выборки из большой последовательности: .

Если размер выборки больше длины последовательности, возникает ошибка .

Игра в кости с использованием модуля random в Python

Далее представлен код простой игры в кости, которая поможет понять принцип работы функций модуля random. В игре два участника и два кубика.

  • Участники по очереди бросают кубики, предварительно встряхнув их;
  • Алгоритм высчитывает сумму значений кубиков каждого участника и добавляет полученный результат на доску с результатами;
  • Участник, у которого в результате большее количество очков, выигрывает.

Код программы для игры в кости Python:

Python

import random

PlayerOne = «Анна»
PlayerTwo = «Алекс»

AnnaScore = 0
AlexScore = 0

# У каждого кубика шесть возможных значений
diceOne =
diceTwo =

def playDiceGame():
«»»Оба участника, Анна и Алекс, бросают кубик, используя метод shuffle»»»

for i in range(5):
#оба кубика встряхиваются 5 раз
random.shuffle(diceOne)
random.shuffle(diceTwo)
firstNumber = random.choice(diceOne) # использование метода choice для выбора случайного значения
SecondNumber = random.choice(diceTwo)
return firstNumber + SecondNumber

print(«Игра в кости использует модуль random\n»)

#Давайте сыграем в кости три раза
for i in range(3):
# определим, кто будет бросать кости первым
AlexTossNumber = random.randint(1, 100) # генерация случайного числа от 1 до 100, включая 100
AnnaTossNumber = random.randrange(1, 101, 1) # генерация случайного числа от 1 до 100, не включая 101

if( AlexTossNumber > AnnaTossNumber):
print(«Алекс выиграл жеребьевку.»)
AlexScore = playDiceGame()
AnnaScore = playDiceGame()
else:
print(«Анна выиграла жеребьевку.»)
AnnaScore = playDiceGame()
AlexScore = playDiceGame()

if(AlexScore > AnnaScore):
print («Алекс выиграл игру в кости. Финальный счет Алекса:», AlexScore, «Финальный счет Анны:», AnnaScore, «\n»)
else:
print(«Анна выиграла игру в кости. Финальный счет Анны:», AnnaScore, «Финальный счет Алекса:», AlexScore, «\n»)

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45

importrandom

PlayerOne=»Анна»

PlayerTwo=»Алекс»

AnnaScore=

AlexScore=

 
# У каждого кубика шесть возможных значений

diceOne=1,2,3,4,5,6

diceTwo=1,2,3,4,5,6

defplayDiceGame()

«»»Оба участника, Анна и Алекс, бросают кубик, используя метод shuffle»»»

foriinrange(5)

#оба кубика встряхиваются 5 раз

random.shuffle(diceOne)

random.shuffle(diceTwo)

firstNumber=random.choice(diceOne)# использование метода choice для выбора случайного значения

SecondNumber=random.choice(diceTwo)

returnfirstNumber+SecondNumber

print(«Игра в кости использует модуль random\n»)

 
#Давайте сыграем в кости три раза

foriinrange(3)

# определим, кто будет бросать кости первым

AlexTossNumber=random.randint(1,100)# генерация случайного числа от 1 до 100, включая 100

AnnaTossNumber=random.randrange(1,101,1)# генерация случайного числа от 1 до 100, не включая 101

if(AlexTossNumber>AnnaTossNumber)

print(«Алекс выиграл жеребьевку.»)

AlexScore=playDiceGame()

AnnaScore=playDiceGame()

else

print(«Анна выиграла жеребьевку.»)

AnnaScore=playDiceGame()

AlexScore=playDiceGame()

if(AlexScore>AnnaScore)

print(«Алекс выиграл игру в кости. Финальный счет Алекса:»,AlexScore,»Финальный счет Анны:»,AnnaScore,»\n»)

else

print(«Анна выиграла игру в кости. Финальный счет Анны:»,AnnaScore,»Финальный счет Алекса:»,AlexScore,»\n»)

Вывод:

Shell

Игра в кости использует модуль random

Анна выиграла жеребьевку.
Анна выиграла игру в кости. Финальный счет Анны: 5 Финальный счет Алекса: 2

Анна выиграла жеребьевку.
Анна выиграла игру в кости. Финальный счет Анны: 10 Финальный счет Алекса: 2

Алекс выиграл жеребьевку.
Анна выиграла игру в кости. Финальный счет Анны: 10 Финальный счет Алекса: 8

1
2
3
4
5
6
7
8
9
10

Игравкостииспользуетмодульrandom

 
Аннавыигралажеребьевку.

Аннавыигралаигрувкости.ФинальныйсчетАнны5ФинальныйсчетАлекса2

 
Аннавыигралажеребьевку.

Аннавыигралаигрувкости.ФинальныйсчетАнны10ФинальныйсчетАлекса2

 
Алексвыигралжеребьевку.

Аннавыигралаигрувкости.ФинальныйсчетАнны10ФинальныйсчетАлекса8

Вот и все. Оставить комментарии можете в секции ниже.

Random Numbers Using the Math Class

Java provides the Math class in the java.util package to generate random numbers.

The Math class contains the static Math.random() method to generate random numbers of the double type.

The random() method returns a double value with a positive sign, greater than or equal to 0.0 and less than 1.0. When you call Math.random(), under the hood, a java.util.Random pseudorandom-number generator object is created and used.

You can use the Math.random() method with or without passing parameters. If you provide parameters, the method produces random numbers within the given parameters.

The code to use the Math.random() method:

The getRandomNumber() method uses the Math.random() method to return a positive double value that is greater than or equal to 0.0 and less than 1.0.

The output of running the code is:

Random Numbers Within a Given Range

For generating random numbers between a given a range, you need to specify the range. A standard expression for accomplishing this is:

Let us break this expression into steps:

  1. First, multiply the magnitude of the range of values you want to cover by the result that Math.random() produces.returns a value in the range ,max–min where max is excluded. For example, if you want 5,10], you need to cover 5 integer values so you can use Math.random()*5. This would return a value in the range ,5, where 5 is not included.
  2. Next, shift this range up to the range that you are targeting. You do this by adding the min value.

But this still does not include the maximum value.

To get the max value included, you need to add 1 to your range parameter (max — min). This will return a random double within the specified range.

There are different ways of implementing the above expression. Let us look at a couple of them.

Random Double Within a Given Range

By default, the Math.random() method returns a random number of the type double whenever it is called. The code to generate a random double value between a specified range is:

You can call the preceding method from the main method by passing the arguments like this.

The output is this.

Random Integer Within a Given Range

The code to generate a random integer value between a specified range is this.

The preceding getRandomIntegerBetweenRange() method produces a random integer between the given range. As Math.random() method generates random numbers of double type, you need to truncate the decimal part and cast it to int in order to get the integer random number. You can call this method from the main method by passing the arguments as follows:

The output is this.

Note: You can pass a range of negative values to generate a random negative number within the range.

Генерация случайных чисел в заданном диапазоне

Существует несколько способов генерации случайного (псевдослучайного) числа:

  1. Использование метода random() из класса математических функций Math , находящемся в пакете java.lang.
  1. Использование метода random() из класса Random , находящемся в пакете java.util.Random.
  1. Использование генератора случайных чисел класса SecureRandom , предназначенного для целей криптографии и, находящегося в пакете java.security. SecureRandom (здесь не рассматривается).

Рассмотрим методы генерации случайных чисел.

Класс Math. Метод random()

Метод random() класса Math возвращает псевдослучайное число типа double в диапазоне 0 ≤ Math.random()

Пример 1. Несколько случайных чисел

Случайное число № 1: 0.9161994380531232 Случайное число № 2: 0.24340742865928744 Случайное число № 3: 0.9783627451986034

Пример 2. Случайное число x в диапазоне a ≤ x ≤ b

Для генерации целого случайного числа x в заданном диапазоне a ≤ x ≤ b, обычно используется следующая зависимость:

x = a + (int)(Math.random()*((b — a) + 1)).

Получим случайное число x в диапазоне: 10 ≤ x ≤ 20 (a=10, b=20).

Результат.Случайное число x: 19

Класс Random. Метод random()

Это наиболее часто используемый класс для генерации псевдослучайный чисел с равномерной функцией распределения. Имеется метод nextGaussian() , который моделирует функцию нормального распределения.

Основными методами этого класса являются:

  • int nextInt( ) — возвращает следующее случайное значение ix типа int в диапазоне -2147483648 ≤ ix
  • int nextInt(int n) — возвращает следующее случайное значение ix типа int в диапазоне 0 ≤ ix
  • float nextFloat() — возвращает следующее случайное значение fx типа float в диапазоне 0.0 ≤ fx
  • double nextDouble() — возвращает следующее случайное значение dx типа double в диапазоне 0.0 ≤ dx
  • boolean nextBoolean() — возвращает следующее случайное значение типа boolean
Для получения случайных чисел необходимо:
  1. Подключить библиотеку случайных чисел. Пишем до определения класса. import java.util.Random;
  2. В классе создать объект rand случайных чисел Random rand = new Random();
  3. Далее использовать необходимые методы объекта rand.

Пример 1. Несколько случайных чисел разных типов.

Случайное число ix: 1438841988 Случайное число dx: 0.6120986135409442 Случайное число fx: 0.103119016 Случайное число bx: true

Пример 2. Случайное число x в диапазоне a ≤ x ≤ b.

Для генерации целого случайного числа x в заданном диапазоне a ≤ x ≤ b, обычно используется следующая зависимость:

тип int int x = a + rand.nextInt(b — a + 1).

тип double double y = a + rand.nextInt(b — a).

Случайное число x: 12 Случайное число dx: 17.505847041626733

Для типа double будет выведено случайное число в виде:

что неудобно. Для приемлемого представления используется форматный вывод, позволяющий выводить числа с заданной точностью.

Форматный вывод

Пакет java.io содержит класс PrintStream , который содержит методы printf и forma t, позволяющие выводить числа с заданной точностью. Рассмотрим метод format(). Синтаксис метода

System.out.format(String format, Object. args),

format — это строка — шаблон, согласно которому будет происходить форматирование, args — это список переменных, для вывода по заданному шаблону.

Строка — шаблон содержит обычный текст и специальные форматирующие символы. Эти символы начинаются со знака процента (%) и заканчиваются конвертором — символом, который определяет тип переменной для форматирования. Вот некоторые конверторы:

Источник

Функция random() – «случайные» вещественные числа

Чтобы получить случайное вещественное число, или, как говорят, число с плавающей точкой, следует использовать функцию из одноименного модуля языка Python. Она не принимает никаких аргументов и возвращает число от 0 до 1, не включая 1:

>>> random.random()
0.17855729241927576
>>> random.random()
0.3310978930421846

или

>>> random()
0.025328854415995194

Результат содержит много знаков после запятой. Чтобы его округлить, можно воспользоваться встроенной в Python функцией :

>>> a = random.random()
>>> a
0.8366142721623201
>>> round(a, 2)
0.84
>>> round(random.random(), 3)
0.629

Чтобы получать случайные вещественные числа в иных пределах, отличных от [0; 1), прибегают к математическим приемам. Так если умножить полученное из число на любое целое, то получится вещественное в диапазоне от 0 до этого целого, не включая его:

>>> random.random() * 10
2.510618091637596
>>> random.random() * 10
6.977540211221759

Если нижняя граница должна быть отличной от нуля, то число из надо умножать на разницу между верхней и нижней границами, после чего прибавить нижнюю:

>>> random.random() * (10 - 4) + 4
9.517280589233597
>>> random.random() * (10 - 4) + 4
6.4429124181215975
>>> random.random() * (10 - 4) + 4
4.9231983600782385

В данном примере число умножается на 6. В результате получается число от 0 до 6. Прибавив 4, получаем число от 4 до 10.

Пример получения случайных чисел от -1 до 1:

>>> random.random() * (1 + 1) - 1
-0.673382618351051
>>> random.random() * (1 + 1) - 1
0.34121487148075924
>>> random.random() * (1 + 1) - 1
-0.988751324713907
>>> random.random() * (1 + 1) - 1
0.44137358363477674

Нижняя граница равна -1. При вычитании получается +. Когда добавляется нижняя граница, то плюс заменяется на минус ( +(-1) = — 1).

Для получения псевдослучайных чисел можно пользоваться исключительно функцией . Если требуется получить целое, то всегда можно округлить до него с помощью или отбросить дробную часть с помощью :

>>> int(random.random() * 100)
61
>>> round(random.random() * 100 - 50)
-33

Why is this needed?

Despite being capable of producing numbers within [0, 1), there are a few downsides to doing so:

  • It is inconsistent between engines as to how many bits of randomness:
    • Internet Explorer: 53 bits
    • Mozilla Firefox: 53 bits
    • Google Chrome/node.js: 32 bits
    • Apple Safari: 32 bits
  • It is non-deterministic, which means you can’t replay results consistently
  • In older browsers, there can be manipulation through cross-frame random polling. This is mostly fixed in newer browsers and is required to be fixed in ECMAScript 6.

Also, and most crucially, most developers tend to use improper and biased logic as to generating integers within a uniform distribution.

Предсказываем Math.random()

В нем есть задача:

Что нужно вписать вместо вопросов, чтобы функция вернула true? Кажется что это невозможно. Но, это возможно, если вы заглядывали в спеку и видели алгоритм ГПСЧ V8. Решение этой задачи в свое время мне показал Роман Дворнов:

Этот код работал в 70% случаев для Chrome < 49 и Node.js < 5. Рома Дворнов, как всегда, показал чудеса магии, которая не что иное, как глубокое понимание внутренних механизмов браузеров. Я все жду, когда Роман сделает доклад на основе этих событий или напишет более подробную статью.

Видите эти равномерности на левом слайде? Изображение показывает проблему с распределением значений. На картинке слева видно, что значения местами сильно группируются, а местами выпадают большие фрагменты. Как следствие — числа можно предсказать.

Выходит что мы можем отреверсить Math.random() и предсказать, какое было загадано число на основе того, что получили в данный момент времени. Для этого получаем два значения через Math.random(). Затем вычисляем внутреннее состояние по этим значениям. Имея внутреннее состояние можем предсказывать следующие значения Math.random() при этом не меняя внутреннее состояние. Меняем код так так, чтобы вместо следующего возвращалось предыдущее значение. Собственно все это и описано в коде-решении для задачи random4. Но потом алгоритм изменили (подробности читайте в спеке). Его можно будет сломать, как только у нас в JS появится нормальная работа с 64 битными числами. Но это уже будет другая история.

Новый алгоритм выглядит так:

Его все так же можно будет просчитать и предсказать. Но пока у нас нет “длинной математики” в JS. Можно попробовать через TypedArray сделать или использовать специальные библиотеки. Возможно кто-то однажды снова напишет предсказатель. Возможно это будешь ты, читатель. Кто знает 😉

Real-valued distributions¶

The following functions generate specific real-valued distributions. Function
parameters are named after the corresponding variables in the distribution’s
equation, as used in common mathematical practice; most of these equations can
be found in any statistics text.

()

Return the next random floating point number in the range [0.0, 1.0).

(a, b)

Return a random floating point number N such that for
and for .

The end-point value may or may not be included in the range
depending on floating-point rounding in the equation .

(low, high, mode)

Return a random floating point number N such that and
with the specified mode between those bounds. The low and high bounds
default to zero and one. The mode argument defaults to the midpoint
between the bounds, giving a symmetric distribution.

(alpha, beta)

Beta distribution. Conditions on the parameters are and
. Returned values range between 0 and 1.

(lambd)

Exponential distribution. lambd is 1.0 divided by the desired
mean. It should be nonzero. (The parameter would be called
“lambda”, but that is a reserved word in Python.) Returned values
range from 0 to positive infinity if lambd is positive, and from
negative infinity to 0 if lambd is negative.

(alpha, beta)

Gamma distribution. (Not the gamma function!) Conditions on the
parameters are and .

The probability distribution function is:

          x ** (alpha - 1) * math.exp(-x  beta)
pdf(x) =  --------------------------------------
            math.gamma(alpha) * beta ** alpha
(mu, sigma)

Gaussian distribution. mu is the mean, and sigma is the standard
deviation. This is slightly faster than the function
defined below.

Multithreading note: When two threads call this function
simultaneously, it is possible that they will receive the
same return value. This can be avoided in three ways.
1) Have each thread use a different instance of the random
number generator. 2) Put locks around all calls. 3) Use the
slower, but thread-safe function instead.

(mu, sigma)

Log normal distribution. If you take the natural logarithm of this
distribution, you’ll get a normal distribution with mean mu and standard
deviation sigma. mu can have any value, and sigma must be greater than
zero.

(mu, sigma)

Normal distribution. mu is the mean, and sigma is the standard deviation.

(mu, kappa)

mu is the mean angle, expressed in radians between 0 and 2*pi, and kappa
is the concentration parameter, which must be greater than or equal to zero. If
kappa is equal to zero, this distribution reduces to a uniform random angle
over the range 0 to 2*pi.

(alpha)

Pareto distribution. alpha is the shape parameter.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *

Adblock
detector