Python: коллекции, часть 4/4: все о выражениях-генераторах, генераторах списков, множеств и словарей

Содержание:

List Comprehension

List Comprehension это создание списка путем итерации в цикле уже существующего списка (с соблюдением указанных условий). Поначалу такой подход может казаться сложным, но когда разберетесь, вы поймете, насколько это просто и быстро.

Чтобы разобраться в list comprehension, нужно
для начала обратиться к обычной итерации
списка. В следующем простом примере
показано, как вернуть новый список,
состоящий только из четных чисел старого.

# просто любой список чисел
some_list = 

# пустой список, который будет заполняться четными числами из первого списка
even_list = []

for number in some_list:
  if number % 2 == 0:
    even_list.append(number)

print(even_list) # 

Давайте разберем этот пример. Сначала мы создаем список с числами. Затем создаем пустой список, в котором будут сохраняться результаты, полученные в цикле. Дальше идет сам цикл, в котором мы перебираем числа из первого списка и проверяем, являются ли они четными. Если число делится на 2 без остатка, мы добавляем его в список четных чисел. Для получения нужного результата нам потребуется 5 строк кода (без учета комментариев), да еще пробелы.

А теперь давайте посмотрим пример, в
котором мы делаем все то же самое, но с
помощью list comprehension.

# просто любой список чисел
some_list = 

# List Comprehension
even_list = 
print(even_list) # 

Давайте возьмем еще пример. Создадим
список, каждый элемент которого будет
элементом старого списка, умноженным
на 7.

my_starting_list = 
my_new_list = []

for item in my_starting_list:
    my_new_list.append(item * 7)
print(my_new_list)  # 

С помощью list comprehension можно достичь
того же результата:

my_starting_list = 
my_new_list = 

print(my_new_list)  # 

Вообще list comprehension пишется в соответствии
со следующей формулой:

В блоке вы указываете, что конкретно нужно сделать с элементом, который возвращает итерация объекта. В нашем примере это , но операция может быть любой, как очень простой, так и очень сложной.

В блок нужно вставить имя объекта, который вы будете перебирать в цикле. В нашем примере это был список, но мог быть кортеж или диапазон.

List
comprehension добавляет элемент из существующего
списка в новый, если соблюдается какое-то
условие. Этот способ лаконичнее, а в
большинстве случаев еще и намного
быстрее. Иногда применение list comprehension
может ухудшить читаемость кода, поэтому
разработчику нужно действовать по
ситуации.

Примеры использования list comprehension с условиями

Вносим в новый список только четные
числа:

only_even_list = 
print(only_even_list)  # 

Это эквивалентно следующему циклу:

only_even_list = list()
for i in range(13):
  if i%2 == 0:
    only_even_list.append(i)
print(only_even_list)  # 

List
comprehension может также содержать вложенные
if-условия

Обратите внимание на следующий
пример:

divisible = list()
for i in range(50):
  if i % 2 == 0:
    if i % 3 == 0:
      divisible.append(i)
print(divisible)  # 

С применением list comprehension этот код можно
переписать следующим образом:

divisible = 
print(divisible)  # 

С list comprehension также может использоваться if-else. В следующем примере мы берем диапазон чисел от 0 до 10 и добавляем в наш список все четные числа из этого диапазона, а нечетные добавляем после умножения на -1.

list_1 = 
print(list_1)  # 

Подписаться

×

Создание

Для создании матрицы используется функция array(). В функцию передаётся список. Вот пример создания, мы подаём в качестве аргумента функции двумерный список:

a = np.array(, ])

Вторым параметром можно задать тип элементов матрицы:

a = np.array(,], int)
print(a)

Тогда в консоль выведется:

 ]

Обратите внимание, что если изменить int на str, то тип элементов изменился на строковый. Кроме того, при выводе в консоль NumPy автоматически отформатировал вывод, чтобы он выглядел как матрица, а элементы располагались друг под другом

В качестве типов элементов можно использовать int, float, bool, complex, bytes, str, buffers. Также можно использовать и другие типы NumPy: логические, целочисленные, беззнаковые целочисленные, вещественные, комплексные. Вот несколько примеров:

  • np.bool8 — логическая переменная, которая занимает 1 байт памяти.
  • np.int64 — целое число, занимающее 8 байт.
  • np.uint16 — беззнаковое целое число, занимающее 2 байта в памяти.
  • np.float32 — вещественное число, занимающее 4 байта в памяти.
  • np.complex64 — комплексное число, состоящее из 4 байтового вещественного числа действительной части и 4 байтов мнимой.

Вы также можете узнать размер матрицы, для этого используйте атрибут shape:

size = a.shape
print(size) # Выведет (2, 3)

Первое число (2) — количество строк, второе число (3) — количество столбцов.

Нулевая матрица

Если необходимо создать матрицу, состоящую только из нулей, используйте функцию zeros():

a_of_zeros = np.zeros((2,2))
print(a_of_zeros)

Результат этого кода будет следующий:

 ]

Ремарка о строках

На самом деле, мы уже ранее сталкивались с массивами в предудыщих лабораторных, когда использовали строковый метод :

>>> s = "ab cd ef1 2 301"
>>> s.split()
'ab', 'cd', 'ef1', '2', '301'

Т.е. , по умолчанию, разбивает строку по символам пустого пространства (пробел, табуляция) и создаёт массив из получившихся «слов».

Загляните в , чтобы узнать, как изменить такое поведение, и разбивать строку, например, по запятым, что является стандартом для представления таблиц в файлах (comma separated values).

Методом, являющимся обратным к операции является .
Он «собирает» строку из массива строк:

Двумерные массивы

Выше везде элементами массива были числа. Но на самом деле элементами массива может быть что угодно, в том числе другие массивы. Пример:

a = 
b = 
c = 
z = 

Что здесь происходит? Создаются три обычных массива , и , а потом создается массив , элементами которого являются как раз массивы , и .

Что теперь получается? Например, — это элемент №1 массива , т.е. . Но — это тоже массив, поэтому я могу написать — это то же самое, что , т.е. (не забывайте, что нумерация элементов массива идет с нуля). Аналогично, и т.д.

То же самое можно было записать проще:

z = , , ]

Получилось то, что называется двумерным массивом. Его можно себе еще представить в виде любой из этих двух табличек:

Первую табличку надо читать так: если у вас написано , то надо взять строку № и столбец №. Например, — это элемент на 1 строке и 2 столбце, т.е. -3. Вторую табличку надо читать так: если у вас написано , то надо взять столбец № и строку №. Например, — это элемент на 2 столбце и 1 строке, т.е. -3. Т.е. в первой табличке строка — это первый индекс массива, а столбец — второй индекс, а во второй табличке наоборот. (Обычно принято как раз обозначать первый индекс и — второй.)

Когда вы думаете про таблички, важно то, что питон на самом деле не знает ничего про строки и столбцы. Для питона есть только первый индекс и второй индекс, а уж строка это или столбец — вы решаете сами, питону все равно

Т.е. и — это разные вещи, и питон их понимает по-разному, а будет 1 номером строки или столбца — это ваше дело, питон ничего не знает про строки и столбцы. Вы можете как хотите это решить, т.е. можете пользоваться первой картинкой, а можете и второй — но главное не запутайтесь и в каждой конкретной программе делайте всегда всё согласованно. А можете и вообще не думать про строки и столбцы, а просто думайте про первый и второй индекс.

Обратите, кстати, внимание на то, что в нашем примере (массив, являющийся вторым элементом массива ) короче остальных массивов (и поэтому на картинках отсутствует элемент в правом нижнем углу). Это общее правило питона: питон не требует, чтобы внутренние массивы были одинаковой длины

Вы вполне можете внутренние массивы делать разной длины, например:

x = , , , [], ]

здесь нулевой массив имеет длину 4, первый длину 2, второй длину 3, третий длину 0 (т.е. не содержит ни одного элемента), а четвертый длину 1. Такое бывает надо, но не так часто, в простых задачах у вас будут все подмассивы одной длины.

(На самом деле даже элементы одного массива не обязаны быть одного типа. Можно даже делать так: , здесь нулевой элемент массива — сам является массивом, а еще два элемента — просто числа. Но это совсем редко бывает надо.)

3 Общие методы для части коллекций

Объяснение работы методов и примеры:

  • .count() — метод подсчета определенных элементов для неуникальных коллекций (строка, список, кортеж), возвращает сколько раз элемент встречается в коллекции.
  • .index() — возвращает минимальный индекс переданного элемента для индексированных коллекций (строка, список, кортеж)
  • .copy() — метод возвращает неглубокую (не рекурсивную) копию коллекции (список, словарь, оба типа множества).
  • .clear() — метод изменяемых коллекций (список, словарь, множество), удаляющий из коллекции все элементы и превращающий её в пустую коллекцию.

Особые методы сравнения множеств (set, frozenset)

  • set_a.isdisjoint(set_b) — истина, если set_a и set_b не имеют общих элементов.
  • set_b.issubset(set_a) — если все элементы множества set_b принадлежат множеству set_a, то множество set_b целиком входит в множество set_a и является его подмножеством (set_b — подмножество)
  • set_a.issuperset(set_b) — соответственно, если условие выше справедливо, то set_a — надмножество

Классификация коллекций

Примечание для словаря (dict):

  • сам словарь изменяем — можно добавлять/удалять новые пары ключ: значение;
  • значения элементов словаря — изменяемые и не уникальные;
  • а вот ключи — не изменяемые и уникальные, поэтому, например, мы не можем сделать ключом словаря список, но можем кортеж. Из уникальности ключей, так же следует уникальность элементов словаря — пар ключ: значение.
    UPD: от sakutylev: Для того, чтобы объект мог быть ключом словаря, он должен быть хешируем. У кортежа, возможен случай, когда его элемент является не хешируемым объектом, и соответственно сам кортеж тогда тоже не является хешируемым и не может выступать ключом словаря.
  • UPD: Благодарю morff за внимательность — {} без значений создают словарь, а со значениями, в зависимости от синтаксиса могут создавать как множество, так и словарь:

Обработка двумерного массива: пример

Предположим, вам задан квадратный массив (массив из строк и столбцов). Предположим, вы должны установить элементы главной диагонали, равные 1 (т. Е. Те элементы для которых ), чтобы установить элементы выше, чем диагональ, равная 0, и установить элементы ниже этой диагонали, равной 2. То есть вам нужно создать такой массив (пример для ):

 
1 0 0 0
2 1 0 0
2 2 1 0
2 2 2 1

Мы стремимся показать вам несколько способов решения этой проблемы

Во-первых, обратите внимание, что элементы, лежащие над главной диагональю, — это элементы для которых , а для элементов ниже главной диагонали. Таким образом, мы можем сравнить значения и , определяющие значение

Мы получаем следующий алгоритм:

None
n = 4
a =  * n for i in range(n)]
for i in range(n):
    for j in range(n):
        if i < j:
            a = 0
        elif i > j:
            a = 2
        else:
            a = 1
for row in a:
    print(' '.join())

Этот алгоритм медленный: он использует два цикла и для каждой пары выполняет одну или две команды . Если мы усложним алгоритм, мы сможем сделать это без условного оператора.

Сначала заполните основную диагональ, для которой нам понадобится один цикл:

for i in range(n):
    a = 1

Затем заполните нулями все элементы над главной диагональю. Чтобы сделать это, для каждой строки с номером вам нужно присвоить значение для = , …, . Для этого вам нужны вложенные циклы:

for i in range(n):
    for j in range(i + 1, n):
        a = 0

По аналогии, для = , …, задайте элементы равными :

for i in range(n):
    for j in range(0, i):
        a = 2

Вы можете комбинировать весь этот код и получить другое решение:

None
n = 4
a =  * n for i in range(n)]
for i in range(n):
    for j in range(0, i):
        a = 2
    a = 1
    for j in range(i + 1, n):
        a = 0
for row in a:
    print(' '.join())

Вот еще одно решение, которое повторяет списки для создания следующих строк списка. строка списка состоит из чисел , за которым следует одно целое число , за которым следуют нули:

None
n = 4
a =  * n
for i in range(n):
    a =  * i +  +  * (n - i - 1)
for row in a:
    print(' '.join())    

Как обычно, вы можете заменить петлю генератором:

None
n = 4
a =  * n
a =  * i +  +  * (n - i - 1) for i in range(n)]
for row in a:
    print(' '.join())    

Примеры использования выражений-генераторов списков:

>>> vec = -4, -2, , 2, 4

# новый список с удвоенными значениями
>>> x*2 for x in vec
# 

# фильтр списка для исключения отрицательных чисел
>>> x for x in vec if x >= 
# 

# применить функцию ко всем элементам
>>> abs(x) for x in vec
# 

# вызов метода для каждого элемента
>>> freshfruit = '  banana', '  loganberry ', 'passion fruit  '
>>> weapon.strip() for weapon in freshfruit
# 

# создаст список из кортежей типа (число, квадрат)
>>> 
# 

# кортеж должен быть заключен в скобки,
# иначе возникнет ошибка
>>> x, x**2 for x in range(6)]
#   File "<stdin>", line 1, in <module>
#     
#                ^
# SyntaxError: invalid syntax

# сгладим список с помощью двух выражений 'for ... in'
>>> vec = , 4,5,6], 7,8,9]]
>>> num for elem in vec for num in elem
# 

Так как Python разрешает переносить все, что находится в скобках, то для более глубокого понимания последнее выражение в примере выше можно записать так:

>>> vec = 
... 1,2,3], 
... 4,5,6], 
... 7,8,9


>>> 
... num
... for elem in vec 
... for num in elem
... 
# 

# или вот еще пример 'понятной' записи
>>> import random
>>> n = 10
>>> tree = 
...         ' '*(n-i)+'/'+''.join(random.choice(' # *') 
...         for _ in range(2*i))+'\\' 
...         for i in range(n)
...         
>>> print('\n'.join(tree))
#          /\
#         / *\
#        /#  *\
#       /  * ##\
#      /   *  #*\
#     /# **  * * \
#    /#  #*# *  *#\
#   /   **##  *   #\
#  /  * ** *   #*# #\
# /** **#*## **  # #*\

И самое главное все работает, правда здорово! Используйте эту приятную особенность языка Python в своем коде, что-бы он был более понятным другим.

Списки-выражения могут содержать сложные подвыражения и вложенные функции:

>>> from math import pi
>>> str(round(pi, i)) for i in range(1, 6)]
# 

2.4.8. Создание двумерного массива¶

Неожиданно нетривиальная операция на двумерных массивах — это создание
двумерного массива определенного размера, заполненного, например,
нулями. Вы помните, что одномерный массив длины можно создавать
как . Возникает желание написать , чтобы
создать двумерный массив размера (мы хотим, чтобы первый
индекс массива менялся от 0 до , а второй индекс до ,
поэтому это именно , а не ). Но это
сработает не так, как вы можете думать. Дело опять в том, что в питоне
массивы
по умолчанию не копируются полностью, поэтому то, что получается
— это массив длина , в котором каждый элемент соответствует
одному и тому же массиву длины . В итоге, если вы будете менять,
например, , то так же будет меняться и , и
и т.д. — т.к. все внутренние массивы на самом деле
соответствуют одному и тому же массиву.

Поэтому массив размера делается, например, так:

a = []
for i in range(n):
    a.append([ * m)

мы вручную раз приписали к массиву один и тот же массив.

Или еще есть магия в одну строчку:

a = 

Я пока не буду объяснять, как это работает, просто можете запомнить. Или
пользоваться предыдущим вариантом.

Добро пожаловать в NumPy!

NumPy (NumericalPython) — это библиотека Python с открытым исходным кодом, которая используется практически во всех областях науки и техники. Это универсальный стандарт для работы с числовыми данными в Python, и он лежит в основе научных экосистем Python и PyData. В число пользователей NumPy входят все — от начинающих программистов до опытных исследователей, занимающихся самыми современными научными и промышленными исследованиями и разработками. API-интерфейс NumPy широко используется в пакетах Pandas, SciPy, Matplotlib, scikit-learn, scikit-image и в большинстве других научных и научных пакетов Python.

Библиотека NumPy содержит многомерный массив и матричные структуры данных (дополнительную информацию об этом вы найдете в следующих разделах). Он предоставляет ndarray, однородный объект n-мерного массива, с методами для эффективной работы с ним. NumPy может использоваться для выполнения самых разнообразных математических операций над массивами. Он добавляет мощные структуры данных в Python, которые гарантируют эффективные вычисления с массивами и матрицами, и предоставляет огромную библиотеку математических функций высокого уровня, которые работают с этими массивами и матрицами.

Узнайте больше о NumPy здесь!

GIF черезgiphy

Установка NumPy

Чтобы установить NumPy, я настоятельно рекомендую использовать научный дистрибутив Python. Если вам нужны полные инструкции по установке NumPy в вашей операционной системе, вы можетенайти все детали здесь,

Если у вас уже есть Python, вы можете установить NumPy с помощью

conda install numpy

или

pip install numpy

Если у вас еще нет Python, вы можете рассмотреть возможность использованияанаконда, Это самый простой способ начать. Преимущество этого дистрибутива в том, что вам не нужно слишком беспокоиться об отдельной установке NumPy или каких-либо основных пакетов, которые вы будете использовать для анализа данных, таких как pandas, Scikit-Learn и т. Д.

Если вам нужна более подробная информация об установке, вы можете найти всю информацию об установке наscipy.org,

фотоАдриеннотPexels

Если у вас возникли проблемы с установкой Anaconda, вы можете ознакомиться с этой статьей:

Как импортировать NumPy

Каждый раз, когда вы хотите использовать пакет или библиотеку в своем коде, вам сначала нужно сделать его доступным.

Чтобы начать использовать NumPy и все функции, доступные в NumPy, вам необходимо импортировать его. Это можно легко сделать с помощью этого оператора импорта:

import numpy as np

(Мы сокращаем «numpy» до «np», чтобы сэкономить время и сохранить стандартизированный код, чтобы любой, кто работает с вашим кодом, мог легко его понять и запустить.)

В чем разница между списком Python и массивом NumPy?

NumPy предоставляет вам огромный выбор быстрых и эффективных числовых опций. Хотя список Python может содержать разные типы данных в одном списке, все элементы в массиве NumPy должны быть однородными. Математические операции, которые должны выполняться над массивами, были бы невозможны, если бы они не были однородными.

Зачем использовать NumPy?

фотоPixabayотPexels

Массивы NumPy быстрее и компактнее, чем списки Python. Массив потребляет меньше памяти и намного удобнее в использовании. NumPy использует гораздо меньше памяти для хранения данных и предоставляет механизм задания типов данных, который позволяет оптимизировать код еще дальше.

Что такое массив?

Массив является центральной структурой данных библиотеки NumPy. Это таблица значений, которая содержит информацию о необработанных данных, о том, как найти элемент и как интерпретировать элемент. Он имеет сетку элементов, которые можно проиндексировать в Все элементы имеют одинаковый тип, называемыймассив dtype(тип данных).

Массив может быть проиндексирован набором неотрицательных целых чисел, логическими значениями, другим массивом или целыми числами.рангмассива это количество измерений.формамассива — это кортеж целых чисел, дающий размер массива по каждому измерению.

Одним из способов инициализации массивов NumPy является использование вложенных списков Python.

a = np.array(, , ])

Мы можем получить доступ к элементам в массиве, используя квадратные скобки. Когда вы получаете доступ к элементам, помните, чтоиндексирование в NumPy начинается с 0, Это означает, что если вы хотите получить доступ к первому элементу в вашем массиве, вы получите доступ к элементу «0».

print(a)

Выход:

NumPy N-мерный массив

NumPy — это библиотека Python, которая может использоваться для научных и числовых приложений, а также инструмент для операций с линейной алгеброй.

Основной структурой данных в NumPy является ndarray, который является сокращенным именем для N-мерного массива. При работе с NumPy данные в ndarray просто называются массивом.

Это массив фиксированного размера в памяти, который содержит данные одного типа, такие как целые числа или значения с плавающей запятой.

Доступ к типу данных, поддерживаемому массивом, можно получить через атрибут «dtype» в массиве. Доступ к измерениям массива можно получить через атрибут «shape», который возвращает кортеж, описывающий длину каждого измерения. Есть множество других атрибутов. Узнайте больше здесь:

N-мерный массив

Простой способ создать массив из данных или простых структур данных Python, таких как список, — это использовать функцию array ().

В приведенном ниже примере создается список Python из трех значений с плавающей запятой, затем создается ndarray из списка и осуществляется доступ к форме и типу массивов.

При выполнении примера печатается содержимое ndarray, фигура, которая является одномерным массивом с 3 элементами, и тип данных, который является 64-битной плавающей точкой.

Методы списков

Давайте теперь
предположим, что у нас имеется список из чисел:

a = 1, -54, 3, 23, 43, -45, 

и мы хотим в
конец этого списка добавить значение. Это можно сделать с помощью метода:

a.append(100)

И обратите
внимание: метод append ничего не возвращает, то есть, он меняет
сам список благодаря тому, что он относится к изменяемому типу данных. Поэтому
писать здесь конструкцию типа

a = a.append(100)

категорически не
следует, так мы только потеряем весь наш список! И этим методы списков
отличаются от методов строк, когда мы записывали:

string="Hello"
string = string.upper()

Здесь метод upper возвращает
измененную строку, поэтому все работает как и ожидается. А метод append ничего не
возвращает, и присваивать значение None переменной a не имеет
смысла, тем более, что все работает и так:

a = 1, -54, 3, 23, 43, -45, 
a.append(100)

Причем, мы в методе
append можем записать
не только число, но и другой тип данных, например, строку:

a.append("hello")

тогда в конец
списка будет добавлен этот элемент. Или, булевое  значение:

a.append(True)

Или еще один
список:

a.append(1,2,3)

И так далее. Главное,
чтобы было указано одно конкретное значение. Вот так работать не будет:

a.append(1,2)

Если нам нужно
вставить элемент в произвольную позицию, то используется метод

a.insert(3, -1000)

Здесь мы
указываем индекс вставляемого элемента и далее значение самого элемента.

Следующий метод remove удаляет элемент
по значению:

a.remove(True)
a.remove('hello')

Он находит
первый подходящий элемент и удаляет его, остальные не трогает. Если же
указывается несуществующий элемент:

a.remove('hello2')

то возникает
ошибка. Еще один метод для удаления

a.pop()

выполняет
удаление последнего элемента и при этом, возвращает его значение. В самом
списке последний элемент пропадает. То есть, с помощью этого метода можно
сохранять удаленный элемент в какой-либо переменной:

end = a.pop()

Также в этом
методе можно указывать индекс удаляемого элемента, например:

a.pop(3)

Если нам нужно
очистить весь список – удалить все элементы, то можно воспользоваться методом:

a.clear()

Получим пустой
список. Следующий метод

a = 1, -54, 3, 23, 43, -45, 
c = a.copy()

возвращает копию
списка. Это эквивалентно конструкции:

c = list(a)

В этом можно
убедиться так:

c1 = 1

и список c будет отличаться
от списка a.

Следующий метод count позволяет найти
число элементов с указанным значением:

c.count(1)
c.count(-45)

Если же нам
нужен индекс определенного значения, то для этого используется метод index:

c.index(-45)
c.index(1)

возвратит 0,
т.к. берется индекс только первого найденного элемента. Но, мы здесь можем
указать стартовое значение для поиска:

c.index(1, 1)

Здесь поиск
будет начинаться с индекса 1, то есть, со второго элемента. Или, так:

c.index(23, 1, 5)

Ищем число 23 с
1-го индекса и по 5-й не включая его. Если элемент не находится

c.index(23, 1, 3)

то метод
приводит к ошибке. Чтобы этого избежать в своих программах, можно вначале
проверить: существует ли такой элемент в нашем срезе:

23 in c1:3

и при значении True далее уже
определять индекс этого элемента.

Следующий метод

c.reverse()

меняет порядок
следования элементов на обратный.

Последний метод,
который мы рассмотрим, это

c.sort()

выполняет
сортировку элементов списка по возрастанию. Для сортировки по убыванию, следует
этот метод записать так:

c.sort(reverse=True)

Причем, этот
метод работает и со строками:

lst = "Москва", "Санкт-Петербург", "Тверь", "Казань"
lst.sort()

Здесь
используется лексикографическое сравнение, о котором мы говорили, когда
рассматривали строки.

Это все основные
методы списков и чтобы вам было проще ориентироваться, приведу следующую
таблицу:

Метод

Описание

append()

Добавляет
элемент в конец списка

insert()

Вставляет
элемент в указанное место списка

remove()

Удаляет
элемент по значению

pop()

Удаляет
последний элемент, либо элемент с указанным индексом

clear()

Очищает
список (удаляет все элементы)

copy()

Возвращает
копию списка

count()

Возвращает
число элементов с указанным значением

index()

Возвращает
индекс первого найденного элемента

reverse()

Меняет
порядок следования элементов на обратный

sort()

Сортирует
элементы списка

Изменение массивов через списочную индексацию

С помощью
списков можно не только создавать новые массивы, но и менять значения в
исходном. Например, возьмем одномерный массив:

a = np.arange(7) # array()

и изменим его
следующие элементы:

a, 4, 6 = -1, -2, -3 # array()

Смотрите, как
это удобно. Мы сразу списком индексов обозначаем изменяемые элементы и
присваиваем им соответствующие новые значения.

Если в списке
индексов имеются повторы, то новое значение будет каждый раз переписываться,
пока не дойдет до последнего:

a, , , 1 = 1, 2, 3, 100 # array()

Здесь в первый
элемент трижды записывались числа: 1, 2 и 3. Но, если выполнить вот такую
операцию:

a, ,  = a, ,  + 3

то число 3 будет
прибавлено только один раз. При арифметических операциях пакет NumPy «понимает», что
первому элементу нужно просто прибавить значение 3 и трижды это делать не надо.
Или же можно записать такую математическую операцию:

a, , 1, 2 += 1 # array()

В этом случае
элементам с индексами 0, 1 и 2 будет прибавлена 1. Здесь также первому элементу
единица добавляется только один раз, несмотря на то, что индекс указан дважды.
Вот это следует иметь в виду при работе с массивами NumPy.

Те же самые
математические операции и операции присваивания можно выполнять и с
многомерными массивами. Работает все аналогичным образом.

Видео по теме

#1. Пакет numpy — установка и первое знакомство | NumPy уроки

#2. Основные типы данных. Создание массивов функцией array() | NumPy уроки

#3. Функции автозаполнения, создания матриц и числовых диапазонов | NumPy уроки

#4. Свойства и представления массивов, создание их копий | NumPy уроки

#5. Изменение формы массивов, добавление и удаление осей | NumPy уроки

#6. Объединение и разделение массивов | NumPy уроки

#7. Индексация, срезы, итерирование массивов | NumPy уроки

#8. Базовые математические операции над массивами | NumPy уроки

#9. Булевы операции и функции, значения inf и nan | NumPy уроки

#10. Базовые математические функции | NumPy уроки

#11. Произведение матриц и векторов, элементы линейной алгебры | NumPy уроки

#12. Множества (unique) и операции над ними | NumPy уроки

#13. Транслирование массивов | NumPy уроки

Манипуляции с формой

Как уже говорилось, у массива есть форма (shape), определяемая числом элементов вдоль каждой оси:

>>> a
array(,
        ],

       ,
        ]])
>>> a.shape
(2, 2, 3)

Форма массива может быть изменена с помощью различных команд:

>>> a.ravel()  # Делает массив плоским
array()
>>> a.shape = (6, 2)  # Изменение формы
>>> a
array(,
       ,
       ,
       ,
       ,
       ])
>>> a.transpose()  # Транспонирование
array(,
       ])
>>> a.reshape((3, 4))  # Изменение формы
array(,
       ,
       ])

Порядок элементов в массиве в результате функции ravel() соответствует обычному «C-стилю», то есть, чем правее индекс, тем он «быстрее изменяется»: за элементом a следует a. Если одна форма массива была изменена на другую, массив переформировывается также в «C-стиле». Функции ravel() и reshape() также могут работать (при использовании дополнительного аргумента) в FORTRAN-стиле, в котором быстрее изменяется более левый индекс.

>>> a
array(,
       ,
       ,
       ,
       ,
       ])
>>> a.reshape((3, 4), order='F')
array(,
       ,
       ])

Метод reshape() возвращает ее аргумент с измененной формой, в то время как метод resize() изменяет сам массив:

>>> a.resize((2, 6))
>>> a
array(,
       ])

Если при операции такой перестройки один из аргументов задается как -1, то он автоматически рассчитывается в соответствии с остальными заданными:

Выполняет сортировку последовательности по возростанию/убыванию.

Параметры:

  • — объект, поддерживающий итерирование
  • — пользовательская функция, которая применяется к каждому элементу последовательности
  • — порядок сортировки

Описание:

Функция вернет новый отсортированный t-list] из итерируемых элементов. Функция имеет два необязательных аргумента, которые должны быть указаны в качестве аргументов ключевых слов.

Аргумент принимает функцию, например . Переданная функция вычисляет результат для каждого элемента последовательности, который используется для сравнения элементов при сортировке. Значением по умолчанию является , т.е. сравнивать элементы напрямую (как есть).

Аргумент имеет логическое значение. Если установлено значение , то элементы списка сортируются в обратной последовательности (по убыванию).

Используйте для преобразования функции, использующей cmp (старый стиль) в использующую key (новый стиль).

Встроенная функция sorted() является гарантированно стабильной. Это означает, что когда несколько элементов последовательности имеют равные значения, их первоначальный порядок сохраняется. Такое поведение полезно при сортировке в несколько проходов.

Примеры различных способов сортировки последовательностей.

Сортировка слов в предложении без учета регистра:

line = 'This is a test string from Andrew'
x = sorted(line.split(), key=str.lower)
print(x)
# 

Сортировка сложных объектов с использованием индексов в качестве ключей :

student = 
    ('john', 'A', 15),
    ('jane', 'B', 12),
    ('dave', 'B', 10),
    

# Сортируем по возрасту student
x = sorted(student, key=lambda student student2])
print(x)
# 

Тот же метод работает для объектов с именованными атрибутами.

class Student
    def __init__(self, name, grade, age):
        self.name = name
        self.grade = grade
        self.age = age
    def __repr__(self):
        return repr((self.name, self.grade, self.age))

student = 
    Student('john', 'A', 15),
    Student('jane', 'B', 12),
    Student('dave', 'B', 10),
    

x = sorted(student, key=lambda student student.age)
print(x)
# 

Сортировка по убыванию:

student = 
    ('john', 'A', 15),
    ('jane', 'B', 12),
    ('dave', 'B', 10),
    

# Сортируем по убыванию возраста student
x = sorted(student, key=lambda i i2], reverse=True)
print(x)
# 

Стабильность сортировки и сложные сортировки:

data = 
x = sorted(data, key=lambda data data])
print(x)
# 

Обратите внимание, как две записи (‘blue’, 1), (‘blue’, 2) для синего цвета сохраняют свой первоначальный порядок. Это замечательное свойство позволяет создавать сложные сортировки за несколько проходов по нескольким ключам

Например, чтобы отсортировать данные учащиеся по возрастанию успеваемости, а затем по убыванию возраста. Успеваемость будет первым ключом, возраст вторым

Это замечательное свойство позволяет создавать сложные сортировки за несколько проходов по нескольким ключам. Например, чтобы отсортировать данные учащиеся по возрастанию успеваемости, а затем по убыванию возраста. Успеваемость будет первым ключом, возраст вторым.

student = 
    ('john', 15, 4.1),
    ('jane', 12, 4.9),
    ('dave', 10, 3.9),
    ('kate', 11, 4.1),
    

# По средней оценке
x = sorted(student, key=lambda num num2])
# По убыванию возраста
y = sorted(x, key=lambda age age1], reverse=True)
print(y)
# 

А еще, для сортировок по нескольким ключам, удобнее использовать модуль . Функции модуля допускают несколько уровней сортировки. Например, как в предыдущем примере успеваемость будет первым ключом, возраст вторым.Только сортировать будем все по возрастанию:

from operator import itemgetter

x = sorted(student, key=itemgetter(2,1))
print(x)
# 

Общее представление о массиве

Массив (в питоне еще принято название «список», это то же самое) — это переменная, в которой хранится много значений. Массив можно представлять себе в виде такой последовательности ячеек, в каждой из которых записано какое-то число:

Значения, хранящиеся в массиве (говорят: элементы массива) нумеруются последовательно, начиная с нуля. На картинке выше числа внутри квадратиков — это значения, хранящиеся в массиве, а числа под квадратиками — номера этих элементов (еще говорят «индексы» элементов)

Обратите внимание, что в массиве 6 элементов, но последний имеет номер 5, т.к. нумерация начинается с нуля

Это важно!

Соответственно, переменная теперь может хранить целиком такой массив. Создается такой массив, например, путем перечисления значений в квадратных скобках:

Теперь переменная a хранит этот массив. К элементам массива можно обращаться тоже через квадратные скобки: — это элемент номер 2, т.е. в нашем случае это . Аналогично, — это 0. В квадратных скобках можно использовать любые арифметические выражения и даже другие переменные: — это 12, обозначает «возьми элемент с номером, равным значению переменной «, аналогично обозначает «возьми элемент с номером, равным 2*i+1», или даже обозначает «возьми элемент с номером, равным четвертому элементу нашего массива» (в нашем примере — это , поэтому — это , т.е. ).

Если указанный номер слишком большой (больше длины массива), то питон выдаст ошибку (т.е. в примере выше будет ошибкой, да и даже тоже). Если указан отрицательный номер, то тут действует хитрое правило. Отрицательные номера обозначают нумерацию массива с конца: — это всегда последний элемент, — предпоследний и т.д. В нашем примере равно 7. Слишком большой отрицательный номер тоже дает ошибку (в нашем примере уже ошибка).

С элементами массива можно работать как с привычными вам переменными. Можно им присваивать значения: , считывать с клавиатуры: , выводить на экран: , использовать в выражениях: (здесь — какая-то еще целочисленная переменная для примера), использовать в if’ах: , или и т.д. Везде, где вы раньше использовали переменные, можно теперь использовать элемент массива.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *

Adblock
detector